Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity.
نویسندگان
چکیده
The antimicrobial action of amphipathic antimicrobial peptides (AMPs) generally depends on perturbation of the bacterial membrane via electrostatic interactions promoting initial binding to the surface and hydrophobic interactions for pore formation into the membrane. Several studies have focused on the structure-activity relationship (SAR) of AMPs by modulation of structural parameters. However, modulation of one parameter commonly induces simultaneous changes in other parameters, making it difficult to investigate the specific influence of a single variable. In the present work, we investigated the distribution effect of cationic amino acids on the hydrophilic surface of the helical wheel using model AMPs composed of only lysine (K) and leucine (L) as representative cationic and hydrophobic residues, respectively, under conditions in which other parameters are fixed. Based on SAR analyses of alpha-helical KL model AMPs displaying different cationic distributions, we propose that the dispersity of cationic amino acids on the hydrophilic surface is a factor that contributes to the antimicrobial activity of AMP. Moreover, antimicrobial activity is enhanced by rearrangement of cationic amino acids to promote dispersed distribution. We confirmed the cationic distribution effect using natural AMP-derived alpha-helical CRAMP18 and its analogs. Our data show that accumulation of lysine shifts in the CRAMP18 analog leads to higher dispersion, and subsequently to improved antimicrobial activity. Therefore, we propose that the cationic distribution effect can be applied for the rational redesign of amino acid sequences to improve the antimicrobial activities of natural alpha-helical AMPs, in combination with regulation of other known structural parameters.
منابع مشابه
Expression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants
Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...
متن کاملEvaluation of the Effect of Less Negatively Charged Amino Acid Substitution in Synthetic Tetramer Peptide S3 Derived from Horseshoe Crab Ambocyte on its Antibacterial Properties
Introduction: The study of the effects of synthetic peptides with antibacterial properties can provide more effective antibiotics. This study designed, expressed, and investigated the Sushi 3 tetramer peptide. Subsequently, it was compared in terms of changing antibacterial properties with another Sushi3 tetramer peptide the aspartic acid and proline amino acids of which were replaced with glyc...
متن کاملHigh specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs
We used a template-assisted approach to develop synthetic antimicrobial peptides, which differ from naturally occurring antimicrobial peptides that can compromise host natural defenses. Previous researches have demonstrated that symmetrical distribution patterns of amino acids contribute to the antimicrobial activity of natural peptides. However, there is little research describing such design ...
متن کاملMimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides.
We have designed beta-amino acid oligomers that are helical, cationic, and amphiphilic with the intention of mimicking the biological activity of amphiphilic, cationic alpha-helical antimicrobial peptides found in nature (e.g., magainins). We have previously identified a 17-residue beta-peptide (called beta-17) with antibiotic activity similar to that of a magainin derivative against four bacte...
متن کاملBiological properties of structurally related alpha-helical cationic antimicrobial peptides.
A series of alpha-helical cationic antimicrobial peptide variants with small amino acid changes was designed. Alterations in the charge, hydrophobicity, or length of the variant peptides did not improve the antimicrobial activity, and there was no statistically significant correlation between any of these factors and the MIC for Pseudomonas aeruginosa, Escherichia coli, or Salmonella typhimuriu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2010